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Total Energy of the Bianchi Type I Universes

S. S. Xulu1
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Using the symmetric energy-momentum complexes of Landau and Lifshitz,
Papapetrou, and Weinberg, we obtain the energy of the universe in anisotropic
Bianchi type I cosmological models. The energy (due to matter plus field) is
found to be zero and this agrees with a previous result of Banerjee and Sen, who
investigated this problem using the Einstein energy-momentum complex. Our
result supports the importance of the energy-momentum complexes and
contradicts the prevailing folklore that different energy-momentum complexes
could give different and hence unacceptable energy distribution in a given space-
time. The result that the total energy of the universe in these models is zero
supports the viewpoint of Tryon. Rosen computed the total energy of the closed
homogeneous isotropic universe and found it to be zero, which agrees with the
studies of Tryon.

1. INTRODUCTION

The landmark observations of 2.7 K background radiation strongly sup-
port that some version of the big bang theory is correct. Tryon (1973) assumed
that our universe appeared from nowhere about 1010 years ago and mentioned
that the conventional laws of physics need not have been violated at the time
of creation of the universe. He proposed that our universe must have a zero
net value for all conserved quantities. He presented some arguments indicating
that the net energy of our universe may be indeed zero. His big bang model (in
which our universe is a fluctuation of the vacuum) predicted a homogeneous,
isotropic, and closed universe consisting of matter and antimatter equally.
Tryon (1973) also referred to an elegant topological argument by Bergmann
that any closed universe has zero energy.

The subject of the energy of the universe remained in almost a slumbering
state for a long period of time and was reopened by interesting work of
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Rosen (1994) and Cooperstock (1994). Rosen (1994) considered a closed
homogeneous isotropic universe described by a Friedmann–Robertson–
Walker (FRW) metric. He used the Einstein energy-momentum complex2 and
found that the total energy is zero. This result interested some general relativ-
ists, for instance, Johri et al. (1995) and Banerjee and Sen (1997). Johri et
al. (1995), using the Landau and Lifshitz energy-momentum complex, showed
that the total energy of an FRW spatially closed universe is zero at all times
irrespective of the equations of state of the cosmic fluid. They also showed
that the total energy enclosed within any finite volume of the spatially flat
FRW universe is zero at all times.

The Bianchi type I solutions, under a special case, reduce to the spatially
flat FRW solutions. Banerjee and Sen (1997), using the Einstein energy-
momentum complex, studied the Bianchi type I solutions and found that the
total (matter plus field) energy density is zero everywhere. As the spatially
flat FRW solution is a special case of the Bianchi type I solutions, one
observes that the energy-momentum complexes of Einstein and of Landau
and Lifshitz give the same result for the spatially flat FRW solutions.

These results, though they appear to be very interesting, are usually not
taken seriously because the use of energy-momentum complexes is restricted
to Cartesian coordinates. There are many prescriptions for obtaining energy
in a curved space-time, and some of them (quasilocal masses) are not limited
to a particular coordinate system, whereas the (energy-momentum complexes)
are restricted to the use of Cartesian coordinates. A large number of definitions
of quasilocal mass (associated with a closed two-surface) have been proposed
(Brown and York, 1993). Bergqvist (1992) studied several different definitions
of quasilocal masses for the Kerr and Reissner–Nordström space-times and
came to the conclusion that not even two of these definitions gave the same
results. Contrary to this, in the last decade, several authors studied energy-
momentum complexes and obtained stimulating results. We will discuss some
of them in brief. The leading contributions of Virbhadra and his collaborators
(Rosen, Parikh, Chamorro, and Aguirregabiria) have demonstrated with sev-
eral examples that for a given space-time, different energy-momentum com-
plexes give the same and acceptable energy distribution. Several energy-
momentum complexes have been shown to give the same energy distribution
for each of the following space-times: the Kerr–Newman space-time (Virbha-
dra 1990a,b. Cooperstock and Richardson, 1992), Vaidya space-time (Virbha-
dra, 1992), Einstein–Rosen space-time (Rosen and Virbhadra, 1993;

2 To avoid any confusion, we mention that we use the term energy-momentum complex for
one which satisfies the local conservation laws and gives the contribution from the matter
(including all nongravitational fields) as well as the gravitational field. Rosen (1994) used
the term pseudotensor for this purpose. We reserve the term energy-momentum pseudotensor
for the part of the energy-momentum complex due to the gravitational field only.
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Virbhadra, 1995), Bonnor–Vaidya space-time (Chamorro and Virbhadra,
1995), and all Kerr–Schild class space-times (Aguirregabiria et al., 1996).
Recently Virbhadra (1999) discussed that the concept of local or quasilocal
mass is very useful in investigating the Seifert conjecture (Seifert, 1979) and
the hoop conjecture (Thorne, 1972). He also showed that, for a general
nonstatic, spherically symmetric space-time of the Kerr–Schild class, the
Penrose quasilocal mass definition (Penrose, 1982) as well as several energy-
momentum complexes yield the same results. For some other interesting
papers on this subject see Virbhadra and Parikh (1993, 1994), Chamorro
and Virbhadra (1996), and Xulu (1998a,b). We have already discussed that
Banerjee and Sen (1997) studied the energy distribution with Bianchi type I
metrics, using the Einstein definition. It is our present aim to investigate
whether or not some other energy-momentum complexes yield the same
results for the Bianchi type I metrics. We use the convention that Latin indices
take values from 0 to 3 and Greek indices values from 1 to 3, and take the
geometrized units G 5 1 and c 5 1

2. BIANCHI TYPE I SPACE-TIMES

The Bianchi type I space-times are expressed by the line element

ds2 5 dt2 2 e2ldx2 2 e2m dy2 2 e2n dz2 (1)

where l, m, n are functions of t alone. The nonvanishing components of the
energy-momentum tensor Tk

i [[ 1/8p Gk
i , where Gk

i is the Einstein tensor] are

T 0
0 5

1
8p

(l̇ṁ 1 ṁṅ 1 ṅl̇)

T 1
1 5

1
8p

(ṁ2 1 ṅ2 1 ṁṅ 1 m̈ 1 n̈) (2)

T 2
2 5

1
8p

(ṅ2 1 l̇2 1 ṅl̇ 1 n̈ 1 l̈)

T 3
3 5

1
8p

(l̇2 1 ṁ2 1 l̇ṁ 1 l̈ 1 m̈)

The dot over l, m, n stands for the derivative with respect to the coordinate
t. The metric given by Eq. (1) reduces to the spatially flat Friedmann–
Robertson–Walker metric as a special case. With l(t) 5 m(t) 5 n(t), defining
R(t) 5 el(t) and transforming the line element (1) to t, x, y, z coordinates
according to x 5 r sin u cos f, y 5 r sin u sin f, and z 5 r cos u gives
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ds2 5 dt2 2 [R(t)]2{dr 2 1 r 2(du2 1 sin2u df2)} (3)

which describes the well-known spatially flat Friedmann–Robertson–Walker
space-time.

3. THE LANDAU AND LIFSHITZ ENERGY-MOMENTUM
COMPLEX

The symmetric energy-momentum complex of Landau and Lifshitz
(1987) is given by

Lij 5
1

16p
6ijkl

,kl (4)

where

6ijkl 5 2g(gijgkl 2 gikgjl) (5)

L00 and La0 give the energy density and energy current (momentum) density
components, respectively. The energy-momentum complex of Landau and
Lifshitz (LL) satisfies the local conservation laws,

Lik

xk 5 0 (6)

where

Lik 5 2g(T ik 1 tik) (7)

g is the determinant of the metric tensor gik, Tik is the energy-momentum
tensor of the matter and all nongravitational fields, and tik is known as the
LL energy-momentum pseudotensor. Thus the locally conserved quantity Lik

contains contributions from the matter, nongravitational, and gravitational
fields. For the expression for tik see Landau and Lifshitz (1987).

Integrating Lik over the three-space gives the energy and momentum
components

Pi 5 # # # Li0 dx1 dx2 dx3 (8)

P0 is the energy and Pa are momentum components. In order to calculate
the energy and momentum density components of the line element (1), the
required nonvanishing components of Sijkl are

60101 5 2e2m12n

60110 5 e2m12n
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60202 5 2e2l12n

60220 5 e2l12n

60303 5 2e2l12m

60330 5 e2l12m (9)

Using the above results in (4) and (5), we obtain

L00 5 La0 5 0 (10)

4. THE ENERGY-MOMENTUM COMPLEX OF PAPAPETROU

The symmetric energy-momentum complex of Papapetrou (1948) is
given by

Vij 5
1

16p
1ijkl

,kl (11)

where

1ijkl 5 !2g(gijhkl 2 gikhjl 1 gklhij 2 gjlhik) (12)

and

hik 5 1
1 0 0 0
0 21 0 0
0 0 21 0
0 0 0 21

2 (13)

is the Minkowski metric. The energy-momentum complex of Papapetrou
satisfies the local conservation laws

Vik

xk 5 0 (14)

The locally conserved energy-momentum complex Vik contains contributions
from the matter, nongravitational, and gravitational fields. V00 and Va0 are
the energy and momentum (energy current) density components. The energy
and momentum are given by

Pi 5 # # # Vi0 dx1 dx2 dx3 (15)

We wish to find the energy and momentum density components for the space-
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time described by the line element (1). The required nonvanishing components
of 1ijkl are

10011 5 2(1 1 e22l) el1m1n

10110 5 e2l1m1n

10022 5 2(1 1 e22m) el1m1n

10220 5 el2m1n

10033 5 2(1 1 e22n) el1m1n

10330 5 el1m2n

10101 5 10202 5 10303 5 el1m1n (16)

Using the above results in (11) and (12), we obtain

V00 5 Va0 5 0 (17)

5. THE WEINBERG ENERGY-MOMENTUM COMPLEX

The symmetric energy-momentum complex of Weinberg (1972) is
given by

Wij 5
1

16p
Dijk

,i (18)

where

Dijk 5
ha

a

xi
h jk 2

ha
a

xj
hik 2

hai

xa h jk 1
haj

xa hik 1
hik

xj
2

h jk

xi
(19)

and

hij 5 gij 2 hij (20)

hij is the Minkowski metric [see Eq. (13)]. The indices on hij or /xi are
raised or lowered with the help of h’s. The Weinberg energy-momentum
complex W ik contains contributions from the matter, nongravitational, and
gravitational fields, and satisfies the local conservation laws

W ik

xk 5 0 (21)

W 00 and W a0 are the energy and momentum density components. The energy
and momentum components are given by
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Pi 5 # # # W i0 dx1 dx2 dx3 (22)

We are interested in determining the energy and momentum density compo-
nents. Now using Eqs. (1) and (19), we find that all the components of Dijk

vanish. Thus Eq. (18) yields

W ik 5 0 (23)

6. DISCUSSION AND SUMMARY

The subject of energy-momentum localization in a curved space-time
has been controversial. Misner et al. (1973) argued that the energy is localiza-
ble only for spherical systems. Cooperstock and Sarracino (1978) contradicted
their viewpoint and argued that if the energy is localizable in spherical
system, then it is localizable for all systems. Bondi (1990) advocated that a
nonlocalizable form of energy is not admissible in relativity; therefore its
location can in principle be found. The energy-momentum complexes are
nontensorial under general coordinate transformations and are restricted to
computations in Cartesian coordinates only. There has been a folklore that
different energy-momentum complexes are very likely to give different and
hence unacceptable energy distributions in a given space-time. To this end
Virbhadra and coworkers and some others showed that several energy-
momentum complexes “coincide” and give acceptable results for some well-
known space-times. Their results influenced many researchers to work on
this subject.

In recent years some researchers showed interest in studying the energy
content of the universe in different models (Rosen, 1994; Cooperstock, 1994;
Johri et al., 1995; Banerjee and Sen, 1997). Rosen (1994), with the Einstein
energy-momentum complex, studied the total energy of a closed homogeneous
isotropic universe described by the Friedmann-Robertson–Walker (FRW)
metric and found it to be zero. Using the Landau and Lifshitz definition of
energy, Johri et al. (1995) demonstrated that (a) the total energy of an FRW
spatially closed universe is zero at all times irrespective of the equations of
state of the cosmic fluid and (b) the total energy enclosed within any finite
volume of the spatially flat FRW universe is zero at all times. Banerjee and
Sen (1997) showed that the energy and momentum density components vanish
in the Bianchi type I space-times (they used the energy-momentum complex
of Einstein).

It is usually suspected that different energy-momentum complexes could
give different results for a given geometry. Therefore, we extended the investi-
gations of Banerjee and Sen with three more energy-momentum complexes
(proposed by Landau and Lifshitz, Papapetrou, and Weinberg) and found the
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same results [see Eqs. (10), (17), and (23)] as reported by them. Note that
the energy density component of the energy-momentum tensor is not zero
for the Bianchi type I solutions [see Eq. (2)]; however, it is clear from Eqs
(10), (17), and (23) that the total energy density (due to matter plus field, as
given by the energy-momentum complexes) vanishes everywhere. This is
because the energy contributions from the matter and field inside an arbitrary
two-surface in Bianchi type I space-times cancel each other. The results in
this paper advocate the importance of energy-momentum complexes (opposes
the folklore against them that different complexes could give different mean-
ingless results for a given metric) and also supports the viewpoint of Tryon.
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